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Abstract— In this paper, we develop a new low-and-high gain
feedback design methodology using a ultra-short-horizon Model
Predictive Controller (MPC) for global asymptotic stabilization
of discrete-time linear system subject to input saturation. The
proposed method yields improved performance over classical
low-and-high gain design and has reduced computational com-
plexity and guaranteed global asymptotic stability of closed-loop
system compared to MPC with a long prediction horizon.

I. INTRODUCTION

Stabilization of linear systems subject to actuator sat-
uration has been extensively studied during the past two
decades and is still drawing renewed attention, largely
because saturation is widely recognized as ubiquitous in
engineering applications and inherent constraints in control
system designs. Many significant results have already been
obtained in the literature. Some early works in this area are
summarized in [3], [21], [26], [22], [7], [10] and references
therein.

The low-gain method, proposed in [14], [15], [13], was
originally developed as a linear feedback design methodol-
ogy in the context of semi-global stabilization under actuator
saturation and later on extended to the global framework
with a gain scheduling [18], [6]. The low-gain feedback is
parameterized by a so-called low-gain parameter, which is
determined a priori in the semi-global setting according to a
pre-selected compact set or adaptively with respect to states
in the global setting. By properly selecting this parameter, we
are able to limit the input magnitude to a sufficiently small
level and avoid saturation for all time so as to stabilize the
system.

On one hand the low-gain proves to be successful in
solving stabilization problems, on the other hand it does
not utilize the full actuation level and hence is conservative
and less capable regarding performance. Low-and-high gain
feedback designs are conceived to rectify the drawbacks
of low-gain design methods, and can make better use of
available control capacity. As such, they have been used for
control problems beyond stabilization, to enhance transient
performance and to achieve robust stability and disturbance
rejection (see [15], [16], [20], [6], [19], [27]). However,
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as will be shown in this paper, there is still a room for
improvement.

Model predictive controllers (MPC) have a reputation of
dealing with constraints and achieving good closed-loop per-
formance. It numerically solves a finite-horizon constrained
optimal control problem at each sample. Hence, a MPC
may choose to operate exactly at the constraints, while a
low-gain strategy would be to avoid the constraints. The
more aggressive approach of the MPC complements the more
conservative low-gain strategy, and is an interesting approach
to include in a low-and-high gain feedback design in order
to improve performance.

A drawback of MPC is the computational complexity of
solving online numerically a constrained optimization prob-
lem (usually a quadratic program) at each sample. Guaran-
tees of MPC stability requires particular formulations of the
finite-horizon optimal control problem, such as sufficiently
long prediction horizon and the use of a terminal cost, [24],
or terminal constraints, [11]. Reduction of computational
complexity typically requires that the prediction horizon is
made shorter, which comes at the cost of more complex
terminal costs and constraints, as well as sub-optimality
compared to an infinite horizon constrained optimal control
formulation, see e.g. [23], [25] for examples of such refor-
mulations.

Explicit MPC of constrained linear systems admits a piece-
wise affine state feedback solution to be pre-computed using
multi-parametric quadratic programming, [2]. Although on-
line computational complexity can be reduced by orders of
magnitude, the approach is still limited by available computer
memory and the cost of off-line pre-computations, [29], [1].
Consequently, low-complexity sub-optimal strategies are also
of interest in explicit MPC in order to manage complexity
due to long prediction horizon, high system order, or many
constraints, while preserving stability (see e.g. [9], [12], [5],
[8D).

The key idea pursued in this paper is to use an ultra-short-
horizon MPC as the high gain strategy in a low-high-gain
feedback design, where simple constraints resulting from
the low-gain design are imposed on the MPC in order to
guarantee stability.

II. CLASSICAL LOW-GAIN DESIGN AND MPC
Consider a discrete-time system
Xk+1 = Axg + Bo(ug) (1

where o(-) is standard saturation, i.e. for u € R™, o(u) =
[oo(u1):--- 100(um)], oo(ui) = sign(u;) min{l, |u;|} and



sign(s) is defined as

1 s >0;
sign(s) = { - 2
an(s) 1 s<o. 2)
It is well-known that the global stabilization problem is
solvable if and only if the following assumption holds
Assumption 1: (A, B) is stabilizable and A has all its
eigenvalues in the closed unit circle.

A. Classical ARE-based low-gain feedback design

The low-gain feedback is a sequence of parameterized
feedback gains F, satisfying the following properties:

1) A+ BF; is Schur stable;

2) limg_o Fe = 0;

3) limgsg || Fe(A + BFE)kon@DO = 0 for any x.
The parameter ¢ is called low-gain parameter. Low-gain
feedback can be design using different methods (see [28] and
references therein). One way of designing low-gain feedback

based on the solution of an H, algebraic Riccati equation
(ARE) is as follows [17]:

up = F,x = —(I + B'P:B) !B’ P, Ax
where P is the positive definite solution of ARE:
P =A'P,A+¢l —A'P,B(I + B'P;B)"'B' P, A.

Following the argument in [17], it is straightforward to show
that the control formulation can be generalized by selecting
a matrix R > 0 and a parameterized matrix Q, > 0 such

that limg—¢ Q. = 0 and ddQ: > 0, and choosing

up = Fox = —(R+ B'P,B) ' B' P, Ax (3)
where P is the solution of ARE:
P, =A'P,A+ Q,— A P,B(R+ B P.B)"'B'P,A, (4)

which has the property that P, — 0 as ¢ — 0 provided that
Assumption 1 holds. It is shown in [17] that (3) satisfies the
three low-gain properties.

The low-gain feedback has been successfully employed to
solve the semi-global stabilization of a linear system subject
to input saturation given by (1). In this context, the low-
gain parameter & controls the domain of attraction of the
closed-loop system. It is clear from the properties of low-
gain feedback that with a smaller ¢, we can shrink the control
input to avoid saturation for a large set of initial conditions.
Hence by tuning ¢ sufficiently small, the domain of attraction
can be made arbitrarily large to contain any a priori given
compact set. To be precise, for any a priori given compact
set, say W, there exists £* such that for any ¢ € (0,¢&*],
the origin of closed-loop system of (1) and (3) is locally
asymptotically stable with ‘W contained in the domain of
attraction. In this case, the resulting low-gain feedback is
linear.

In order to solve the global stabilization problem, the low-
gain parameter ¢ can be scheduled adaptively with respect
to the states. This has been done in the literature, see for

instance [6]. In general, the scheduled parameter £(x) should
satisfy the following properties:
1) e(x) : R" — (0,1] is continuous and piecewise
continuously differentiable.
2) There exists an open neighborhood O of the origin
such that e(x) = 1 for all x € O.
3) For any x € R”?, we have || Fy)x|| < 1.
4) g(x) = 0 as ||x]| = oo.
5) { x € R" | x'Pexpx < ¢ } is a bounded set for all
c > 0.
One particular choice of scheduling e, which satisfies the
above conditions, is given in [6] as follows

e(x) = max{r € (0,1] | (x’ P, x) trace(P,) < %} )

where b = 2trace(BB’) while P, is the unique positive
definite solution of ARE (4) with ¢ = r.

The scheduled version of low-gain feedback controllers
for global stabilization is given by

ur(x) = Fo)x = —(B'Poy B + R) "' B PyxyAx  (6)
where Pg(y) is the solution of (4) with & replaced by &(x).

B. MPC

Let U denote the region {u € R™ | u; € [-1,1],i =
1,...,m}. An MPC problem with prediction horizon N can
be formulated by solving the optimization problem

min{uk}I}(V:—Ol Z,Icvz_ol x; Oxg +up Rug + xjy Pxy
S.t.
Xg+1 = Axg + Bug, Vk=0,...,N —1
ug €U, Vk =0,...,N —1,
R>0, 0>0, P>0

Under the Assumption 1, the optimization problem is feasible
for every initial condition. By solving the above, we obtain
an open-loop optimal control sequence (1, ..., Uxn—1). Only
the first input is applied to the system. This process is
repeated at the each sample time.

The optimization problem can be reformulated in the mp-
QP

J(x0) = xqYxo + miny, Uy HUN + xqFUyN
S.t.
GUny X W + Ex,,

where H > 0, Uy = (ug, ..., uy_,) is the optimal control
sequence and Y, H, F, G, W, E can be obtained from system
dynamics and Q, R and P (see [2]).

It is shown in [4] that, by selecting P as the unique
positive definite solution of the ARE

P=(A-BL)P(A— BL)+ L'RL + Q 7)

where
L = (B'PB + R)"'B’PA,

there is a positively invariant region O, around the equi-
librium for which the MPC controller corresponds to uy =
—Lxy, and in which no constraints are activated (i.e., the
controller becomes an unconstrained LQR controller).



Moreover, if N is chosen sufficiently large, then the MPC
controller is sure to bring any initial condition within ‘W
to O within N steps (i.e., by the end of the prediction
horizon). In this case, the MPC solution is equivalent to the
solution of the infinite-horizon optimization problem

ming,, jeo Y ko X Oxp + uj Rug
S.t.
Xg+1 = Axg + Bug, Yk =0,1,...
up €U, Vk =0,1,....

and stability is therefore guaranteed.

C. Connection between scheduled low-gain and MPC

Suppose we choose in scheduled low-gain design that
Q. = €0 and R to be the same as in MPC. Note that
for x; € Os, we have e(xg) = 1 and Q, = Q. Hence for
Xk € O5sNO, the scheduled low-gain controller corresponds
precisely to the MPC controller uy = —Lxg. It is also easily
verified that the AREs (4) and (7) are the same, with ¢ = 1.

From the comparison above, we can conclude that the
MPC and scheduled low-gain formulations produce an “in-
ner region” U5 N O around the equilibrium, where they
share an unconstrained optimal linear controller. However,
for x outside this region, they determine the control input
differently.

In the semi-global case, if we formulate the MPC problem
with a weighting matrix Q. such that lim;—,o Q. = 0, in the
inner region O, an unconstrained linear controller applies,
which corresponds precisely to an ARE-based low-gain con-
troller (3). As ¢ — 0, O Will expand to become arbitrarily
large. Eventually, the MPC controller within ‘W will simply
be a linear controller corresponding to a stabilizing ARE-
based low-gain controller.

III. LOW-AND-HIGH GAIN DESIGN USING MPC

A. Classical low-and-high-gain feedback design for discrete-
time system

Although in the global framework, the low-gain parameter
is adapted with respect to the states so that the control
input gets as close to the admissible limits as possible while
avoiding saturation, the low-gain feedback still does not fully
utilize the actuation capability, especially in the MIMO case.
To rectify this drawback, the so-called low-and-high gain
feedback design method was developed in [6], [19], [27].

The low-and-high-gain state feedback is composed of a
low-gain state feedback and a high-gain state feedback as

up =up +ug = Feoop)Xx + Faxg (3)

where Fg(y, )Xk is the scheduled low-gain feedback designed
in previous section with R = [. The high-gain feedback is
of the form,

Frxi = pFex;)Xk

where p > 0 is called the high-gain parameter.

For continuous-time systems, the high gain parameter p
does not affect the domain of attraction and can be any
positive real number. It aims mainly at achieving control

objectives beyond stability, such as robustness, disturbance
rejection and performance. However, the high-gain parameter
can not be arbitrarily large for discrete-time systems. In order
to preserve local asymptotic stability, this high gain has to
be bounded at least near the equilibrium. A suitable choice
of such a high-gain parameter satisfies

pe |0 k] )
where P, is the solution of ARE (4) with R = I (see
[27]). This high-gain can also be adapted respect to states
and accompanied with the scheduled low-gain parameter to
solve the global stabilization problem. This result is stated
in the next lemma [27]:
Lemma 1: Consider system (1). Suppose R =
Q. > 0 is such that
lim 0, = 0. 92 >0 for e >0.
Let P, be the solution of (4). The equilibrium of the
interconnection of (1) with the low-and-high-gain feedback

e = ~(1+ g2 + B Pagu B) B P A
(10)

I and

is globally asymptotically stable.
Proof: For simplicity, we denote £(x), Fg(,) and
Pg(x,) tespectively by ex, Fr and Pg.
Define a Lyapunov function Vj; = )c,’c Pix.. The schedul-
ing (5) guarantees that

|(I + B'PxB)'B' Py Axy|| < 1.

Define puy = |B'PyB||, vi = —(I + B'P,B)"'B’ P, Axy
and iy = o(ug). We evaluate Vi1 — Vi along the trajecto-
ries as

Vi1 — Vie = —=x3 Qrxg — ity + Xp 1 [Prt1 — PrlXi41
+ [ix — vk]'(I + B' Py B)[ity — vg]
—x3, Qexie — e l” + (1 4 o) lliige — vie?
+ X1 [Prg1 — PrlXksa
= —x Qrxk + i — SF2% g |)?

1+
— T o+ X [Pt — Pl

IA

Since ||vg |l < 1, we have
~ 2
lorell < el = (1 + ) vkl

This implies that

L
ity — HE

1
vell < 2 [,
and thus,

S Ik, 2 L 2
pacllite — =55 vell” — - llvell” < 0.

Combining the above, we get for any xi # 0,
Vit = Vie < =x3, Qicxie — llvell® + Xpy 1 [Prsr — PrlXis1.

Note that the scheduling (5) implies that Vi4; — V% and
x//¢+1[Pk+l — P]xg+1 can not have the same signs (see [6]).
Consequently, we have for x; # 0

Vk+1 — Vi <O
This proves global asymptotic stability of the origin. [ ]



B. A new low-and-high-gain feedback design using MPC

The underlying philosophy behind the above low-and-
high gain design is, based on the low-gain design and its
associated Lyapunov function Vi, to find a high gain part
and form a composed controller which not only renders Vj
to decay every step to ensure stability but also potentially
accelerates the convergence.

With this in mind, we shall propose another low-and-
high gain design methodology using MPC with a prediction
horizon N = 1. For Q > 0 and R > 0, let Q, = €0, P,
be the solution of (4) with Q. and R and ¢ = &(xi) be
determined by (5).

Consider the Lyapunov candidate V(xi) = x,’cPs(xk)xk.
We also take the same abbreviations as used in the proof of
Lemma 1. Under the constraints

up € U, Vk, (11

we have that for arbitrary uj along the trajectory of (1),

Vg1 — Vi = =x3 Qr X —ug Rug + x| [Pregr — Prlxisa

+ [ur — Fixi] (R + B' Py B)[ug — Fyxi]

= —x;, Qkxp — X3 F{ RFxy

— 2x; F{ R[uy — Frx]

+ [ux — Frxi] B' Py Bluy — Fyxy]

+ X1 [Peg1 — PrlXkqr-
where Fy = —(R + B'PyB)"'B'P A. In view of the
property that Vi1 — Vi can not have the same sign with
xllc+1[Pk+1 — Prlxg 41, to ensure Vi1 — Vi < 0 for xi # 0,
it is sufficient to restrict that

2xl/€F,éR[uk — Frxi]
— [ux — Fiexi) B' PeBlug — Frxi] =20 (12)

This can be satisfied by enforcing constraints fori = 1, ...m,

sign(Dy,; xx ) (Ug,; — Frixg) =0,
2Dy i xx — Cr,i (ur — Frexi)(up,i — Fixg) >0

13)
(14)

where Ck = B/PkB, Dk = RFk and Ck,i’ Dk,i’ Fk,i and
uy,; denote the ith row of Cy, Dy, Fr and ug. Function
sign(+) is defined in (2). Observe that (13) and (14) hold if
(13) and the following constraints are satisfied:
sign(Dy i x) [2Dp,ixk — Cr,i(ur — Fixg)] = 0. (15)

Note that (13) and (15) are a conservative reformulation of
(12).

The constraints (13) and (15) are linear in u; only for
current step. We can obtain u; by solving the following MPC
problem with N =1

min J = uj Rug + x| Pxpqq
Uk

(16)

subject to
Xk+1 = Axg + Buy (17)
1 =<u,; <1, i=1,..,m, (18)
sigh(Dy ;xx) (g — Frixg) =0, i =1,....,m, (19)
sign(Dg.i X)) [2Dg,ixk — Cri(ur — Frx)] = 0,
i=1,..,m, (20)

where P is P, with ¢ = 1.

This problem is always feasible since uy = Fpxy is a
feasible solution. The solution to the above MPC problem
can be obtained by online solving the following convex
Quadratic Programming problem

rBin J =up (R + B'PB)uy + 2x; A’ PBuy (1)
subject to
<us <1 i=1,m, (22)
sign(Dgixk) (g, — Frixe) >0, i =1,...,m, (23)
sign(Dy,ixk) [2Dg,ixx — Cr,i(ur — Fxxi)] > 0,
i=1,...m (24

The resulting uy is a nonlinear function of xx, which we can
denote as uy = f(xg).

Note that by a re-parametrization with introducing more
parameters, an explicit solution of (21)-(24) with affine
dependence on the parameters can be obtained using multi-
parametric quadratic programming (mp-QP). This will in-
crease complexity, but it is expected to contribute less to the
added complexity than increasing the prediction horizon N.

We have the following theorem

Theorem 1: The equilibrium of the closed-loop system of
(1) and the controller uy = f(xx) constructed through (21)-
(24) is globally asymptotically stable.

Proof: By construction, the obtained controller uy
guarantees that Vx4 — Vi < 0 for any x; # 0. The result
follows immediately. [ ]

Remark 1: Compared with the classical low-and-high
gain design, the proposed modified approach using MPC
yields an LQ optimal controller in a local region around the
equilibrium. Moreover, while preserving Vi 41— Vg, it allows
more freedom in choosing ;. when states are large and hence
will potentially improve the performance, however at the cost
of more computational loads. On the other hand, compared to
MPC with a long prediction horizon, the modified approach
achieves a guaranteed global asymptotic stability of the
closed-loop with very short prediction horizon N = 1 and it
is more computationally efficient than MPC with large N.

IV. EXAMPLE AND SIMULATION
Consider the following system
1 1 0

Xk+1 = 0 1 IXk+
0 0 1 0 1

Choose Q = I and R = I. We simulate the closed-loop
systems of (25) with classical low-and-high gain feedback

0 0
o (ug,1)
Lo [U(uk,z)

] (25)



(10) and modified low-and-high gain feedback defined by
(21)-(24). The simulations are initialized from 8 corner
points of cubic [—4, 4] x[—4, 4] x[—4, 4]. The state evolutions
are shown in the following figures. On average, we observe a
20% —25% improvement on the settling time and overshoot.

Modified low-and-high gain Current low-and-high gain

states
states

10 20 30 40 50 10 20 30 40 50
time instance time instance

Fig. 1. Initial condition [4,4, 4]

Modified low-and-high gain Current low-and-high gain

states
states

-8
10 20 30 40 50 10 20 30 40 50

time instance time instance

Fig. 2. Initial condition [4, 4, —4]

V. CONCLUSION

In this paper, we developed a new low-and-high gain
feedback design methodology for global stabilization of
discrete-time linear systems subject to input saturation using
an ultra-short horizon MPC. Simulation on a triple-integrator
type system shows improved performance compared with
classical low-and-high gain method. The design in this paper
can also be done in a semi-global framework, in which
scheduling of ¢ is not needed and computational complexity
can be further reduced.
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